Analytic on-body antenna and propagation models

verfasst von
Markus Grimm
betreut von
Dirk Michael Manteuffel
Abstract

Funkapplikationen im und am Körper werden zunehmend in unterschiedlichen Lebensbereichen eingesetzt. Die fortschreitende Miniaturisierung solcher Geräte führt häufig dazu, dass der Nutzer selbst zum prägenden Teil der Funkanwendungen wird. Die primär der Körperkontur folgenden Übertragungsstrecken sind hierbei nicht durch herkömmliche Freiraumfunkfelddämpfungsmodelle nachzubilden, da der dominante Ausbreitungsmechanismus auf Oberflächenwellen zurückzuführen ist. Ziel der vorliegenden Dissertation ist die Definition adaptierter Antennenparameter und die Entwicklung skalierbarer physikalisch motivierter Kanalmodelle. Die theoretischen Grundlagen zur Wellenausbreitung entlang ebener verlustbehafteter Grenzschichten werden durch das klassische Sommerfeldproblem eingeführt. Diesbezüglich wird eine Lösung für den quasi-stationären Funkfeldbereich aufgezeigt und zur Diskussion grundlegender elektromagnetischer Ausbreitungsphänomene im Frequenzbereich zwischen 400 MHz und 60 GHz herangezogen. Basierend hierauf wird eine Methode zum Antennen-de-embedding vorgestellt, welche die Abschätzung des durchschnittlich zu erwartenden Antennenfernfeldes ermöglicht. Des Weiteren wird das körpergebundene Fernfeld in eine TM und eine TE Komponente zerlegt, um seine Wirkung auf zwei äquivalente elektrische Dipole abzubilden. Dieser Ansatz ermöglicht die Definition von On-Body Antennenparameter, u.a. Direktivität und Antennenwirkfläche, welche zur systematischen Klassifikation körpergetragener Antennen herangezogen werden. Während dieser Ansatz hinreichend zur Beschreibung direkter Ausbreitungspfade verwendet werden kann, ist ihre Verwendung bei gekrümmten Ausbreitungspfaden durch das zugrunde gelegte ebene Modell beschränkt. Diese Limitation wird durch Einführung eines zylindrischen Phantommodells umgangen, indem das ebene Modell zur Modellierung des quasistationären Feldbereichs verwendet wird und das Zylindermodel weiter entfernte Distanzen beschreibt. Die Modellentwicklung wird hierbei komplementär zum TM/TE-Ansatz des ebenen Modells gehalten. Die gesamte Theorie wird durch numerische Ganzkörpersimulationen und Messungen in einer Antennenmesskammer verifiziert.

Organisationseinheit(en)
Institut für Hochfrequenztechnik und Funksysteme
Typ
Dissertation
Anzahl der Seiten
146
Publikationsdatum
2019
Publikationsstatus
Veröffentlicht
Elektronische Version(en)
https://doi.org/10.15488/4317 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“